
1

FBlockManager
(Development Guide)

2010-10-01

Axel Kesseler

Purpose ___ 2

Components ___ 2

IFBlockAccessor ___ 3

IFBlockAccessorEvents ___ 3

IReportSink ___ 4

FBlockAccessorBase __ 4

DefaultFBlockAccessorEvents __ 4

Sequences ___ 4

Task Creation ___ 4

Task Destruction ___ 5

FBlock Connection ___ 5

FBlock Disconnection ___ 6

Writing an FBlock Application __ 6

General Steps__ 7

Creating an FBlock Application using a DLL _______________________________________ 9

Creating an FBlock Application using an EXE _____________________________________ 11

Connecting an FBlock__ 12

Disconnecting from an FBlock___ 13

Handling the Instance ID ___ 13

Using the Report Sink__ 13

Abbreviations ___ 14

2

Purpose

This guide shows how to develop a so-called function block application. Such an application
is used to simulate the functionality of an FBlock and will be managed through the FBlock-
Manager application, which is written in C#. Furthermore, every of the function block simula-
tions is based on the usage of K2L’s ATS testing environment.

Components

The overall FBlockManager consists of an executable which represents the user interface (UI)
application to manage multiple function block simulations, a dynamic link-library (DLL)
which provides a C# class collection needed to handle the communication between the UI and
its assigned FBlock simulations and of course the FBlock simulations itself. See Figure 1 to
become acquainted with all involved components. Because of the nature of this document an
explanation of the user interface application will not be in the focus right here.

The dynamic link-library contains the declarations of the interfaces, the events and some base
class implementations. To get an impression how the single classes collaborate see Figure 2.
The interfaces exposed by the DLL defining the “contract” how a communication between the
FBlockManager application and its assigned FBlocks has to be done. In general this means, it
is possible to implement the interfaces by yourself but you shouldn’t do this because some of
the required management stuff is already covered by the provided base classes. Therefore, the
easiest way to create a function block application is to derive an own class from the abstract
class FBlockAccessorBase and to implement the needed methods like shown in Figure 2.

Figure 1: Component communication overview

3

IFBlockAccessor

The interface IFBlockAccessor represents the core interface and defines properties and
methods used to collect needed information and to control the behavior of the function block
application from within the FBlockManager application like Connect and Disconnect. This in-
terface is already implemented by the abstract class FBlockAccessorBase.

IFBlockAccessorEvents

The interface IFBlockAccessorEvents contains the event definitions which are used to inform
the FBlockManager application about various state changes like Connected and Disconnected.
Note that this interface is already implemented by class DefaultFBlockAccessorEvents.

namespace: fblock.manager

DefaultFBlockAccessorEvents

+FireConnectedEvent()
+FireDisconnectedEvent()
+FireInstanceIDChangedEvent()
+FireShowUIChangedEvent()
+FireLocationChangedEvent()

IFBlockAccessorEvents

<<event>>+Connected
<<event>>+Disconnected
<<event>>+InstanceIDChanged
<<event>>+ShowUIChanged
<<event>>+LocationChanged

IFBlockAccessor

<<get>>+Name
<<get>>+Category
<<get>>+Description
<<get>>+Version
<<get>>+Catalog
<<get>>+FBlockID
<<get>>+InstanceID
<<get>>+IsConnected
<<get>>+ReportSink
<<set/get>>+ShowUI
<<get>>+MainForm

+Initialize(IReportSink)
+Cleanup()
+Connect()
+Disconnect()
+LoadConfiguration()
+SaveConfiguration()

IReportSink

+Message(string, ...)
+Message(string, ..., object)
+Warning(string, ...)
+Warning(string, ..., object)
+Error(string, ...)
+Error(string, ..., object)
+Debug(string, ...)
+Debug(string, ..., object)

FBlockAccessorBase

<<abstract>>+GetForm
<<abstract>>+GetName
<<abstract>>+GetCategory
<<abstract>>+GetDescription
<<abstract>>+GetVersion
<<abstract>>+GetCatalog
<<abstract>>+GetFBlockID
<<abstract>>+GetInstanceID

<<abstract>>+RunInitialize()
<<abstract>>+RunCleanup()
<<abstract>>+RunConnect()
<<abstract>>+RunDisconnect()
<<abstract>>+RunLoadConfiguration()
<<abstract>>+RunSaveConfiguration()

ShowUIChangedEventArgs

<<get>>+ShowUI
<<get>>+StateUI: ShowState

InstanceIDChangedEventArgs

<<get>>+InstanceID

User Application

FBlockAccessorImpl FBlockForm

Figure 2: FBlockManager library class overview

4

IReportSink

The interface IReportSink represents the definition of a logging sink which should be used by
a function block implementation to report its current state, warnings or errors. An instance to
the report sink is handover to the function block application during its initialization process.
This means the report sink is not available until the method Initialize has been called!

FBlockAccessorBase

The class FBlockAccessorBase implements the interface IFBlockAccessor and should always
be used to derive an own class from. Otherwise the additional management functionality must
to be implemented by oneself!

DefaultFBlockAccessorEvents

The class DefaultFBlockAccessorEvents implements the interface IFBlockAccessorEvents and
is used to report some state changes to the FBlockManager application. Note there is no need
to inherit from this class directly because the base class DefaultFBlockAccessorEvents already
supports all methods to fire state change events!

Sequences

Task Creation

If the FBlockManager application loads an FBlock’s binary file the creation procedure will be
executed as shown in Figure 3. Note that the class FBlockAccessorBase does additional man-
agement work like form creation, additional initialization and configuration loading.

 : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImplFBblockManager (EXE) SystemFBlockInvoker

1 : ImportFromFile()

2 : InvokeCreateInstance()
3 : CreateInstance()

4 : IFBlockAccessor*
5 : success/fail

6 : Initialize()
7 : Initialize()

8 : Initialize()
9 : GetForm()

10 : WindowSubClassing()

11 : RunInitialize()

implicit

form

creation

12 : LoadConfiguration()

13 : RunLoadConfiguration()

14 : GetForm.Show()

15 : success/fail

16 : success/fail

17 : success/fail

Figure 3: Task creation sequence

5

Maybe you recognized the self-call to method WindowsSubClassing shown in Figure 3. This
is a well-know programming trick to catch and handle “important” Windows events. In this
special case Windows Sub Classing is used to suppress the Windows message WM_CLOSE
and therefore to avoid the FBlock binary’s main window from being closed by clicking the
Close button in the form’s upper right corner. As result the FBlock’s main window will be put
into hidden state and the application remains available until the FBlockManager application
will be closed!

Task Destruction

If the FBlockManager application closes or unloads an FBlock’s binary file the destruction se-
quence will be executed as shown in Figure 4. Note that the class FBlockAccessorBase does
additional management work like saving the configuration, additional de-initialization and
form closing. Indeed, the destruction procedure looks very similar to the creation procedure
except the additional Disconnect action. An explicit undo of the Windows Sub Classing is not
necessary because the form will be really closed and destroyed afterwards.

FBlock Connection

If the FBlockManager application tries to connect an FBlock application to its counterpart the
connection procedure will be executed as shown in Figure 5. This is very easy to understand
because an FBlock simulator needs its communication partner. The only important thing right
here is that the implementation of an FBlockAccessorBase derived class has to fire the Con-
nected event if the connection could be made! Please do not forget to fire this event because
otherwise the FBlockManager application is unable to reflect this state change to the user. See
section Connecting an FBlock for an example.

FBblockManager (EXE) FBlockInvoker : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl

1 : Remove()

2 : Disconnect()
3 : Disconnect()

4 : Disconnect()
5 : RunDisconnect()

6 : FireDisconnectedEvent

7 : success/fail

8 : success/fail
9 : success/fail

10 : success/fail

11 : Cleanup()
12 : Cleanup()

13 : Cleanup()

14 : SaveConfiguration()

15 : RunSaveConfiguration()

16 : RunCleanup()

17 : GetForm.Close()

18 : success/fail

19 : success/fail

20 : success/fail

Figure 4: Task destruction sequence

6

FBlock Disconnection

If the FBlockManager application tries to disconnect an FBlock application from its commu-
nication partner the disconnection sequence will be executed as shown in Figure 6. This is
very alike to the above explained connection behavior. The only important thing right here is
that the implementation of an FBlockAccessorBase derived class has to fire the Disconnected
event if the connection could be closed! Please do not forget to fire this event because other-
wise the FBlockManager application is unable to reflect this state change to the user. See sec-
tion Disconnecting from an FBlock for an example.

Writing an FBlock Application

This section shows how to implement an FBlock application which then can be used with the
FBlockManager. Basically it is possible to create such an application as an executable as well
as a dynamic link-library. But to prevent users from starting the program without the FBlock-
Manager it’s a good idea to build an FBlock application’s release as a dynamic link-library!
Therefore an executable should be used only for development and testing purpose. The dis-
tinction between both types (EXE and DLL) will be discussed later in this document.

FBblockManager (EXE) FBlockInvoker : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl

1 : Connect()

2 : Connect()
3 : Connect()

4 : Connect()
5 : RunConnect()

6 : FireConnectedEvent

7 : success/fail
8 : success/fail

9 : success/fail

10 : success/fail

Figure 5: FBlock connection sequence

FBblockManager (EXE) : IFBlockAccessorFBlockInvoker : FBlockAccessorBase : FBlockAccessorImpl

1 : Disconnect()

2 : Disconnect()
3 : Disconnect()

4 : Disconnect()
5 : RunDisconnect()

6 : FireDisconnectedEvent

7 : success/fail
8 : success/fail

9 : success/fail
10 : success/fail

Figure 6: FBlock disconnection sequence

7

General Steps

Independent of an FBlock application’s type (EXE or DLL) some general steps are always
necessary. See following list for each of those steps.

1. Create a new C# project (usually a WinForm application).

2. Add the FBlockManager’s DLL (fblock.library.dll) to the list of references.

3. Create a new public class and derive it from class FBlockAccessorBase.

4. Implement all inherited abstract methods of class FBlockAccessorBase.

5. Provide appropriated information in each derived method.

6. Build the project and load it into the FBlockManager (fblock.manager.exe).

Hint: Implementation of inherited abstract methods best works using the Developer Studio’s
context menu. To do it, right click the name of the abstract class (in this case FBlock-
AccessorBase) and choose menu item Implement Abstract Class from the context
menu (see Figure 7). Afterwards a lot of new code can be found in the source file.

Now it seems to be a good idea to have a brief look at the generated methods to understand
what is needed to be done by each method.

GetFBlockID()

This is one of the most important methods because the function block identifier is essential to
track the underlying FBlock through the whole system. Always return the real function block
identifier and if possible avoid hardcoded return values.

GetInstanceID()

This is another very important method because the FBlock’s instance identifier is necessary to
track an FBlock’s instance through the whole system. Always return the up-to-date instance
identifier and always fire the Instance ID Change to inform the FBlockManager! See section
Handling the Instance ID later in this document.

Figure 7: How to implement an abstract class

8

GetForm()

This method is relevant for internal window handling and management and therefore a very
important method (especially for the FBlockManager). This method should always return a
valid instance of the FBlock application’s main window. Otherwise the FBlockManager is
unable to run the FBlock application!

GetName()

This method returns the name of the implemented function block. If possible this method
should return the real FBlock name. Please avoid hardcoded return values. Keep in mind the
method’s return value will only be displayed and is not checked by the FBlockManager.

GetDescription()

This method should return a short description so that the user gets a brief instruction about the
FBlock’s purpose. Keep in mind the method’s return value will only be displayed and is not
checked by the FBlockManager. Therefore, only provide appropriated information right here.

GetVersion()

This method returns a string containing the version number of the FBlock application’s binary
file. This information could be important for bug tracking and problem reporting. But keep in
mind the method’s return value will only be displayed and is not checked by the FBlock-
Manager. Therefore, only provide appropriated information right here.

GetCatalog()

This method returns a string containing the version of the underlying function block catalog
(FCat). This information could be important for bug tracking and problem reporting. But keep
in mind the method’s return value will only be displayed and is not checked by the FBlock-
Manager. Therefore, only provide appropriated information right here.

GetCategory()

This method returns a string containing a type descriptor. Usually this descriptor will be set to
FBlock but sometimes it might be set to Shadow. Keep in mind the method’s return value will
only be displayed and is not checked by the FBlockManager. Therefore, only provide appro-
priated information right here.

RunInitialize()

This method is used to handle additional initializations. If no additional initialization stuff is
required this method should not fail! Be aware if this method returns unsuccessful then the
complete initialization procedure will be aborted and the FBlock application’s binary file will
not be added to the FBlockManager application! See Figure 3 for more details.

9

RunLoadConfiguration()

This method enables an FBlock application to load its own configuration (usually from a file).
If configuration loading is not required this method should not fail! Be aware if this method
returns unsuccessful then the complete initialization procedure will be aborted and the FBlock
application’s binary file will not be added to the FBlockManager application! See Figure 3 for
more details.

RunConnect()

This method enables an FBlock application to execute its connection procedure. Such a con-
nection is usually made by creating, initializing and connecting a K2L Automotive generated
FBlock. This method should return successful when a connection could be established or if
the connection was already made. After connecting an FBlock it is very important to fire the
Connected event because otherwise the FBlockManager application will not recognize this
occurrence! See Figure 5 to get an overview about the connection behavior and see also sec-
tion Connecting an FBlock for a more detailed description.

RunDisconnect()

This method enables an FBlock application to execute its disconnecting procedure. Such a
disconnection is usually made by disconnecting from a K2L Automotive generated FBlock.
This method should return successful if the disconnection could be made or if the FBlock has
already been disconnected. After disconnecting from an FBlock it is very important to fire the
Disconnected event because otherwise the FBlockManager application will not recognize this
occurrence! See Figure 6 to get an overview about the disconnection behavior and see also
section Disconnecting from an FBlock for a more detailed description.

RunSaveConfiguration()

This method enables an FBlock application to save its configuration (usually into a file). If it
isn’t required to save the configuration this method should return with success. Otherwise the
FBlockManager application will report this event as an error! But the cleanup procedure is not
aborted in this case. See Figure 4 for more details.

RunCleanup()

This method is used to execute additional cleanups. If no additional cleanup stuff is required
this method should return with success. Otherwise the FBlockManager application will report
this event as an error! But the cleanup procedure is not aborted in this case. See Figure 4 for
more details.

Creating an FBlock Application using a DLL

Basically it will be a good idea to implement an FBlock application as a dynamic link-library
because users are not encouraged to start such programs directly. But sometimes it might be a
better idea to have an executable instead. See section Creating an FBlock Application using
an EXE under what circumstances it is better to have an executable file.

10

Before continuing with the “real” implementation it is necessary to make some assumptions to
ensure, that only the important aspects will be discussed. See following enumeration for the
list of tasks needed to prepare.

1. A new C# application of type “Class Library” has been created.

2. A new Form named MainForm has been added to the project.

3. A class with name FBlockManagerImpl which is derived from base class
FBlockAccessorBase has been added to the project. The class already over-
rides its inherited abstract methods. See also section General Steps.

4. An additional constructor taking an instance of class FBlockManagerImpl as
parameter has been added to class MainForm.

5. The property InstanceID, the method Connect and the method Disconnect
have already been added to class MainForm.

6. Additionally, a class VersionData has been added to the project which pro-
vides global information about the underlying FBlock The class may also be
used with the applications About box.

7. Furthermore, a DLL containing the MediaPlayer sample FBlock has been
generated and added to the project using K2L’s MAG.

After above preparations, replacing all existing “throw new” statements with an appropriated
content should be the next step. See following code snipped for the implementation results.

 public class FBlockManagerImpl : fblock.manager. FBlockAccessorBase
 {
 private MainForm mainForm = null ;

 public FBlockManagerImpl()
 {
 // Instantiate the main form.
 this .mainForm = new MainForm (this);
 }

 public override int GetFBlockID()
 {
 // Obtain the real FBlock's ID.
 return K2L.Automotive.Test. MediaPlayer .FBlockId;
 }

 public override int GetInstanceID()
 {
 // Return with currently used Instance ID.
 return this .mainForm.InstanceID;
 }

 public override System.Windows.Forms. Form GetForm()
 {
 return this .mainForm;
 }

 public override string GetName()
 {
 // Obtain the real FBlock's name.
 return K2L.Automotive.Test. MediaPlayer .FBlockName;
 }

11

 public override string GetDescription()
 {
 return VersionData .Description;
 }

 public override string GetVersion()
 {
 return VersionData .Version;
 }

 public override string GetCatalog()
 {
 return VersionData .Catalog;
 }

 public override string GetCategory()
 {
 return VersionData .Category;
 }

 public override bool RunInitialize()
 {
 return true ; // Do not fail!
 }

 public override bool RunLoadConfiguration()
 {
 return true ; // Do not fail!
 }

 public override bool RunConnect()
 {
 return this .mainForm.Connect();
 }

 public override bool RunDisconnect()
 {
 return this .mainForm.Disconnect();
 }

 public override bool RunSaveConfiguration()
 {
 return true ; // Do not fail!
 }

 public override bool RunCleanup()
 {
 return true ; // Do not fail!
 }
 }

The above sample implementation offers a maximum of flexibility especially because of the
usage of the real function block name and its identifier which are directly taken from the gen-
erated FBlock code.

Creating an FBlock Application using an EXE

Due to the fact that a dynamic link-library is good idea to prevent users from executing such a
file directly, is a DLL as binary output very disturbing during development time. Under that
condition it could be better to have an executable instead. To achieve this is in C# quite easy
because the differences between EXE files and DLLs are not that much. The only things

12

which are really needed are to choose “Windows Application” as the binary’s output type and
to provide an appropriated main function (usually located within file Program.cs).

To change the program’s output type from DLL into EXE open the project’s properties pane
and move to page Application. Here you choose “Windows Application” from the combo box
below Output Type. That’s it.

The easiest way to obtain an appropriated Main function is to create an independent project of
type Windows Forms Application and thereafter to copy the file Program.cs into the own pro-
ject. Do not forget to adapt the namespace after adding this file to your project! See following
code snipped for additional modifications.

 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application .EnableVisualStyles();
 Application .SetCompatibleTextRenderingDefault(false);

 // Adaptions according to FBlockManager's behavior.
 FBlockManagerImpl impl = new FBlockManagerImpl ();
 impl.RunInitialize();
 impl.RunLoadConfiguration();
 Application .Run(impl.GetForm());
 impl.RunSaveConfiguration();
 impl.RunCleanup();
 }
 }

With this it becomes possible to switch between an executable and a dynamic link-library as
output format whenever it is needed simply by changing the Output Type on the project’s pro-
perties pane.

Connecting an FBlock

As already mentioned an FBlock application’s main form should provide a public method to
connect to a MOST function block which is called by class FBlockManagerImpl. Further-
more, such method has the duty to inform the FBlockManager application about a successful
connection by firing the Connection event. See following code snipped how to fire this event.

 public bool Connect()
 {
 // Do anything to connect to MOST function block.

 // Inform FBlockManager about granted connection.
 if (this .connected && this .manager != null)
 this .manager.FireConnectedEvent();

 return this .connected;
 }

13

Disconnecting from an FBlock

The same as with connecting an FBlock application applies to disconnecting such an applica-
tion too. This means an FBlock application should also provide a public method to handle the
disconnection stuff and the method is called by class FBlockManagerImpl. Furthermore, this
method has the duty to inform the FBlockManager application about successful disconnecting
from its MOST function block by firing the Disconnection event. See following code snipped
how to fire this event.

 public bool Disconnect()
 {
 // Do anything to disconnect from MOST function blo ck.

 // Inform FBlockManager about successful disconnect ion.
 if (! this .connected && this .manager != null)
 this .manager.FireDisconnectedEvent();

 return this .connected;
 }

Handling the Instance ID

Because of the nature that an instance ID can vary between two connections the FBlock appli-
cation needs to reflect such changes to the FBlockManager. The best way to achieve this is to
fire the Instance ID Changed event every time the instance ID has been modified. See follow-
ing code snipped how to fire this event.

 private void numInstanceID_ValueChanged(object sender, EventArgs args)
 {
 if (this .manager != null)
 this .manager.FireInstanceIDChangedEvent(
 Convert .ToInt32(this .numInstanceID.Value)
);
 }

The above code snipped assumes a number edit box within the FBlock application’s UI which
is linked to a member function that handles all value changes.

Using the Report Sink

To use the report sink from within an FBlock application it is only needed to share the refer-
ence to the FBlockAccessorBase derived class. But keep in mind, the report sink will not be
available until the FBlockManager calls method Initialize of interface IFBlockAccessor! And
in case of an executable file which is not started by the FBlockManager a report sink will
never be available except it will be implemented by oneself. This exactly means always check
the reference returned by property ReportSink of interface IFBlockAccessor before using it!
See following code snipped to get an impression how to use FBlockManager’s report sink.

 if (this .manager != null && this .manager.ReportSink != null)
 this .manager.ReportSink.Message("Hello world" , "FBlock" , "Test");

14

Using the ReportSink to capture internal application states and events is always a good idea.
But keep in mind, more than one application requesting the FBlockManager to print important
information. Therefore, distinguish between messages, warnings and errors carefully. Further-
more, always provide a source identifier and an appropriated category in each message. This
makes it easier to filter the FBlockManager’s output panel for special messages.

It is also possible to handover an object reference in each report sink function. This is very
helpful if you need to print for example an exception. So, just put a caught exception into the
object parameter of an error message and the FBlockManager will print the object using the
ToString method.

As shown in Figure 2 the interface IReportSink also provides methods to print out debugging
messages. But be aware debugging massages will only be printed if the FBlockManager’s
executable file is compiled as Debug version. Otherwise such messages will be suppressed!

Abbreviations

ATS Automotive Test System, a C# based framework to build MOST applications

DLL Dynamic Link Library, a binary collection of executable functions

EXE Extension of Windows executable files

FBlock The contract how a MOST function block communicates with its Shadows

FCat Function block Catalog, a description of a MOST function block

ID IDentifier, usually a number used as handle to an object

K2L Name of the company which publishes various tools regarding to MOST

MAG MOST Application Generator, a tool to generate FBlock binary files

MOST Multimedia Oriented Systems Transport, the communication protocol

UI User Interface, the visible part of an application

