FBlockManager

(Development Guide)
2010-10-01

Axel Kesseler

Purpose

Components

| FBlock A ccessor

| FBlock Accessor Events

IReportSink

FBlock Accessor Base

DefaultFBlock Accessor Events

Sequences

Task Creation

Task Destruction

FBlock Connection

FBlock Disconnection

Writing an FBlock Application

General Steps

Creating an FBlock Application usingaDLL

©O N O o o a b B DM DM DO ODNDN

Creating an FBlock Application using an EXE

Connecting an FBlock

Disconnecting from an FBlock

Handling the Instance ID

Using the Report Sink

Abbreviations

N
2 W W WN R

Purpose

This guide shows how to develop a so-called fumchimck application. Such an application
is used to simulate the functionality of an FBIlaokd will be managed through the FBlock-
Manager application, which is written in C#. Furthere, every of the function block simula-
tions is based on the usage of K2L’s ATS testingrenment.

Components

The overall FBlockManager consists of an executalblieh represents the user interface (Ul)
application to manage multiple function block siatidns, a dynamic link-library (DLL)
which provides a C# class collection needed to leatié communication between the Ul and
its assigned FBlock simulations and of course tBB¢€k simulations itself. See Figure 1 to
become acquainted with all involved components.aBse of the nature of this document an
explanation of the user interface application wit be in the focus right here.

1 FBlock Hansger EEE

e

ALy

8 FBlock 18193 The Version 2.... [= |5
— = i
FBlockManager
dynamic
link-library

Tinestamp Souce
© NBEAM0WBAT FBlock
52010062028 FBlock.. L
2010082023

2010082023 Fo

o
o

€ Fllock
© M052010082042 FBlock.. Event Mode [FBlock 2069 (0815 has

FBlock simulations

FBlockManager Ul
Figure 1. Component communication overview

The dynamic link-library contains the declaratiafighe interfaces, the events and some base
class implementations. To get an impression howsihgle classes collaborate see Figure 2.
The interfaces exposed by the DLL defining the tcact” how a communication between the
FBlockManager application and its assigned FBldws to be done. In general this means, it
is possible to implement the interfaces by yourbatfyou shouldn’t do this because some of
the required management stuff is already coveretthéyprovided base classes. Therefore, the
easiest way to create a function block applicaisoto derive an own class from the abstract
classFBlockAccessorBase and to implement the needed methods like shoviigare 2.

IFBlockAccessor

The interfacelFBlockAccessor represents the core interface and defines pregednd
methods used to collect needed information andiral the behavior of the function block
application from within the FBlockManager applicatilike Connect and Disconnect. This in-
terface is already implemented by the abstracs &1BsockAccessorBase.

namespace: fblock.manager

InstanceIDChangedEventArgs ShowUIChangedEventArgs

<<get>>+InstancelD <<get>>+ShowUl
‘\ <<get>>+StateUl: ShowState
IFBlockAccessorEvents
<<event>>+Connected

<<event>>+Disconnected
<<event>>+InstanceIDChanged
<<event>>+ShowUIChanged
<<event>>+LocationChanged

IReportSink
+Message(string, ...)
+Message(string, ..., object)

DefaultFBlockAccessorEvents +Warning(string, ...)
+Warning(string, ..., object)
+FireConnectedEvent() +Error(string, ...)
+FireDisconnectedEvent() +Error(string, ..., object)
+FireInstanceIDChangedEvent() +Debug(string, ...)
+FireShowUIChangedEvent() +Debug(string, ..., object)
+FireLocationChangedEvent() A
Z% IFBlockAccessor
FBlockAccessorBase <<get>>+Name
<<abstract>>+GetForm <<get>>+Categ_or_y
<<abstract>>+GetName <<get>>+Desqr|pt|on
<<abstract>>+GetCategory S<get> >+Ver5|:)n
<<abstract>>+GetDescription SRR,
<<abstract>>+GetVersion Sget>gtRBIocdD
<<get>>+InstanceIlD

<<abstract>>+GetCatalog
<<abstract>>+GetFBlockID
<<abstract>>+GetInstanceID

<<abstract>>+Runlnitialize()
<<abstract>>+RunCleanup()
<<abstract>>+RunConnect()
<<abstract>>+RunDisconnect()

|> <<get>>+IsConnected
<<get>>+ReportSink

<<set/get>>+ShowUI
<<get>>+MainForm

+Initialize(IReportSink)
+Cleanup()

<<abstract>>-+RunLoadConfiguration() :ggggﬁﬁtégt 0
<< >>+| i i
abstract RunSaveConfiguration() +LoadConfiguration()
A +SaveConfiguration()
|
User Application
FBlockAccessorImpl FBlockForm

Figure 2: FBlockManager library class overview

IFBlockAccessorEvents

The interfacd FBlockAccessor Events contains the event definitions which are usedform
the FBlockManager application about various staenges like Connected and Disconnected.
Note that this interface is already implementecallagsDefaul tFBlockAccessor Events.

IReportSink

The interfacd ReportSnk represents the definition of a logging sink whéttould be used by
a function block implementation to report its catretate, warnings or errors. An instance to
the report sink is handover to the function bloplplecation during its initialization process.
This means the report sink is not available uh#l inethod Initialize has been called!

FBlockAccessorBase

The clasg-BlockAccessorBase implements the interfadé-BlockAccessor and should always
be used to derive an own class from. Otherwisatlt#tional management functionality must
to be implemented by oneself!

DefaultFBlockAccessorEvents

The clasDefaultFBlockAccessor Events implements the interfadé& BlockAccessor Events and

is used to report some state changes to the FBlanklyer application. Note there is no need
to inherit from this class directly because theebaasDefaultFBlockAccessor Events already
supports all methods to fire state change events!

Sequences

Task Creation

If the FBlockManager application loads an FBlodiisary file the creation procedure will be
executed as shown in Figure 3. Note that the ¢t&bsckAccessorBase does additional man-
agement work like form creation, additional iniizaition and configuration loading.

FBblockManager (EXE FBlockInvoker System : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl
1 : ImportFromFile()
2 : InvokeCreatelInstance(
3 : Createlnstance()

| 4: IFBlockAccessor* implicit
5 : success/fail form
creation

6 : Initialize() 7 Initialize() 6 Intilze)
- Initialize

9: Gethrm()

>

10: WindowSubCIassingaJ

11 : RunInitialize()

>

1 12 : LoadConfiguration()
13 : RunLoadConfiguration(

14 : GetForm.Show()

15 : success/fail

16 : success/fail
L 17 : success/fail

Figure 3: Task creation sequence

Maybe you recognized the self-call to method Wingd8ubClassing shown in Figure 3. This
is a well-know programming trick to catch and hantimportant” Windows events. In this

special case Windows Sub Classing is used to ssppihe Windows message WM_CLOSE
and therefore to avoid the FBlock binary’s main daw from being closed by clicking the

Close button in the form’s upper right corner. Asult the FBlock’s main window will be put

into hidden state and the application remains akilgl until the FBlockManager application
will be closed!

Task Destruction

If the FBlockManager application closes or unload$-Block’s binary file the destruction se-
guence will be executed as shown in Figure 4. Nl the clas$BlockAccessorBase does
additional management work like saving the configion, additional de-initialization and
form closing. Indeed, the destruction procedurésoeery similar to the creation procedure
except the additional Disconnect action. An explicido of the Windows Sub Classing is not
necessary because the form will be really closeddastroyed afterwards.

FBblockManager (EXE. FBlockInvoker : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl
1 : Remove()
2 : Disconnect()

3 : Disconnect()

4 : Disconnect()

5 : RunDisconnect()

6 : FireDisconnectedEvent

7 : success/fail

(- 8 : success/fail =

. 9 : success/fail
10 : success/fail

11 : Cleanup() A 12 : Cleanup()

13 : Cleanup()

14 : SaveConfiguration()

15 : RunSaveConfiguration(,

16 : RunCleanup()

17 : GetForm.Close() H

18 : success/fail

19 : success/fail

L 20 : success/fail

Figure 4: Task destruction sequence

FBlock Connection

If the FBlockManager application tries to connectRBlock application to its counterpart the
connection procedure will be executed as showngarg 5. This is very easy to understand
because an FBlock simulator needs its communicai@otmer. The only important thing right
here is that the implementation of BBlockAccessorBase derived class has to fire the Con-
nected event if the connection could be made! Bleasnot forget to fire this event because
otherwise the FBlockManager application is unableetlect this state change to the user. See
sectionConnecting an FBlock for an example.

FBblockManager (EXE) FBlockinvoker : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl

A 1: Connect()
<

2 : Connect()

3 : Connect()

4 : Connect()

5 : RunConnect()

6 : FireConnectedEvent

7 : success/fail
8 : success/fail

9 : success/fail m
10 : success/fail H

Figure5: FBlock connection sequence

FBlock Disconnection

If the FBlockManager application tries to disconnac FBlock application from its commu-
nication partner the disconnection sequence wilekecuted as shown in Figure 6. This is
very alike to the above explained connection bedravihe only important thing right here is
that the implementation of dBlockAccessorBase derived class has to fire the Disconnected
event if the connection could be closed! Pleasealdorget to fire this event because other-
wise the FBlockManager application is unable téexfthis state change to the user. See sec-
tion Disconnecting from an FBlock for an example.

FBblockManager (EXE) FBlockInvoker : IFBlockAccessor : FBlockAccessorBase : FBlockAccessorImpl

| 1: Disconnect()
<

2 : Disconnect()

3 : Disconnect()

4 : Disconnect() 5 : RunDisconnect()

6 : FireDisconnectedEvent

7 : success/fail

9 : success/fail T 8 : success/fai

— 10 : success/fail

Figure 6: FBlock disconnection sequence

Writing an FBlock Application

This section shows how to implement an FBlock aggpion which then can be used with the
FBlockManager. Basically it is possible to createtsan application as an executable as well
as a dynamic link-library. But to prevent usersrirstarting the program without the FBlock-
Manager it's a good idea to build an FBlock apgiaas release as a dynamic link-library!
Therefore an executable should be used only foeldpment and testing purpose. The dis-
tinction between both types (EXE and DLL) will bisacussed later in this document.

General Steps

Independent of an FBlock application’s type (EXEDdL) some general steps are always
necessary. See following list for each of thospste

Create a new C# project (usually a WinForm appbcét

Add the FBlockManager’'s DLL (fblock.library.dll) tine list of references.
Create a new public class and derive it from crBI®ckAccessorBase.
Implement all inherited abstract methods of cleBBckAccessor Base.
Provide appropriated information in each derivedhuoe.

L A

Build the project and load it into the FBlockMana{fdlock.manager.exe).

Hint: Implementation of inherited abstract methods besks using the Developer Studio’s
context menu. To do it, right click the name of #iestract class (in this caE8lock-
AccessorBase) and choose menu item Implement Abstract Class ftbe context
menu (see Figure 7). Afterwards a lot of new caalelwe found in the source file.

[as]

H namespace WindowsFormsApplicationl
{

public class FElockManagerI
g : fhlock.manager.F
10 g Refactor 3

11 } Organize Usings »
Implement Abstract Class

Ej Create Unit Tests...

Insert Snippet...

| Surround With...

.8 | Go To Definition

Figure 7: How to implement an abstract class

Now it seems to be a good idea to have a brief btathe generated methods to understand
what is needed to be done by each method.

GetFBlocklI D()

This is one of the most important methods becauwsdunction block identifier is essential to
track the underlying FBlock through the whole sgstélways return the real function block
identifier and if possible avoid hardcoded retuatues.

Getlnstancel D()

This is another very important method because Bledk’s instance identifier is necessary to
track an FBlock’s instance through the whole systBiways return the up-to-date instance
identifier and always fire the Instance ID Changenform the FBlockManager! See section
Handling the Instance ID later in this document.

GetForm()

This method is relevant for internal window hangland management and therefore a very
important method (especially for the FBlockManagdi)is method should always return a

valid instance of the FBlock application’s main daw. Otherwise the FBlockManager is

unable to run the FBlock application!

GetName()

This method returns the name of the implementedtiom block. If possible this method
should return the real FBlock name. Please avoiddoaled return values. Keep in mind the
method’s return value will only be displayed andias checked by the FBlockManager.

GetDescription()

This method should return a short description s ttine user gets a brief instruction about the
FBlock’s purpose. Keep in mind the method’s retuaiue will only be displayed and is not
checked by the FBlockManager. Therefore, only mtexappropriated information right here.

GetVersion()

This method returns a string containing the versiomber of the FBlock application’s binary
file. This information could be important for bugtking and problem reporting. But keep in
mind the method’s return value will only be dismdyand is not checked by the FBlock-
Manager. Therefore, only provide appropriated imfation right here.

GetCatalog()

This method returns a string containing the versibthe underlying function block catalog
(FCat). This information could be important for bwgcking and problem reporting. But keep
in mind the method’s return value will only be desged and is not checked by the FBlock-
Manager. Therefore, only provide appropriated imfation right here.

GetCategory()

This method returns a string containing a type wgse. Usually this descriptor will be set to

FBlock but sometimes it might be set to Shadow.Kieemind the method’s return value will

only be displayed and is not checked by the FBloakdfjer. Therefore, only provide appro-
priated information right here.

Runl nitialize()

This method is used to handle additional initidlaas. If no additional initialization stuff is
required this method should not fail!l Be awarehistmethod returns unsuccessful then the
complete initialization procedure will be abortetlahe FBlock application’s binary file will
not be added to the FBlockManager application! Bgare 3 for more details.

RunL oadConfiguration()

This method enables an FBlock application to ldadwn configuration (usually from a file).
If configuration loading is not required this methshould not fail! Be aware if this method
returns unsuccessful then the complete initiakimaprocedure will be aborted and the FBlock
application’s binary file will not be added to tRBlockManager application! See Figure 3 for
more details.

RunConnect()

This method enables an FBlock application to exedstconnection procedure. Such a con-
nection is usually made by creating, initializingdeconnecting a K2L Automotive generated
FBlock. This method should return successful wherornection could be established or if
the connection was already made. After connectm&Block it is very important to fire the
Connected event because otherwise the FBlockMareggaication will not recognize this
occurrence! See Figure 5 to get an overview abdmitonnection behavior and see also sec-
tion Connecting an FBlock for a more detailed description.

RunDisconnect()

This method enables an FBlock application to exedst disconnecting procedure. Such a
disconnection is usually made by disconnecting feoii2L Automotive generated FBlock.
This method should return successful if the diseation could be made or if the FBlock has
already been disconnected. After disconnecting faonfrBlock it is very important to fire the
Disconnected event because otherwise the FBlockiarapplication will not recognize this
occurrence! See Figure 6 to get an overview alwmeitdisconnection behavior and see also
sectionDisconnecting from an FBlock for a more detailed description.

RunSaveConfiguration()

This method enables an FBlock application to stsseanfiguration (usually into a file). If it
isn’t required to save the configuration this metistould return with success. Otherwise the
FBlockManager application will report this eventaaserror! But the cleanup procedure is not
aborted in this case. See Figure 4 for more details

RunCleanup()

This method is used to execute additional cleanifipg additional cleanup stuff is required
this method should return with success. OtherwiseRBlockManager application will report
this event as an error! But the cleanup procedureot aborted in this case. See Figure 4 for
more details.

Creating an FBlock Application using a DLL

Basically it will be a good idea to implement anlédk application as a dynamic link-library
because users are not encouraged to start suctapreglirectly. But sometimes it might be a
better idea to have an executable instead. Se®rsé&ireating an FBlock Application using

an EXE under what circumstances it is better to havexacwgable file.

Before continuing with the “real” implementationstnecessary to make some assumptions to
ensure, that only the important aspects will bewdised. See following enumeration for the
list of tasks needed to prepare.

1. A new C# application of type “Class Library” hashecreated.
2. A new Form nametainForm has been added to the project.

3. A class with namd-BlockManagerImpl which is derived from base class
FBlockAccessorBase has been added to the project. The class alreasly o
rides its inherited abstract methods. See alsioseBeneral Seps.

4. An additional constructor taking an instance ogskaBlockManagerImpl as
parameter has been added to cMamForm.

5. The property InstancelD, the method Connect andriathod Disconnect
have already been added to cls&snForm.

6. Additionally, a class/ersionData has been added to the project which pro-
vides global information about the underlying FBddthe class may also be
used with the applications About box.

7. Furthermore, a DLL containing thdediaPlayer sample FBlock has been
generated and added to the project using K2L's MAG.

After above preparations, replacing all existinigréiv new” statements with an appropriated
content should be the next step. See following amilgped for the implementation results.

public class FBlockManagerimpl :fblock.manager. FBlockAccessorBase
{
private MainForm mainForm= null ;
public FBlockManagerimpl()
{
/I Instantiate the main form.
this .mainForm = new MainForm (this);
}
public override int GetFBlockID()
{
/I Obtain the real FBlock's ID.
return K2L.Automotive.Test. MediaPlayer .FBlockld;
}
public override int GetlnstancelD()
{
/I Return with currently used Instance ID.
return this .mainForm.InstancelD;
}
public override System.Windows.Forms. Form GetForm()
{
return this .mainForm;
}
public override string GetName()
/I Obtain the real FBlock's name.
return K2L.Automotive.Test. MediaPlayer .FBlockName;
}

10

public override string GetDescription()
{
return VersionData .Description;
}
public override string GetVersion()
{
return VersionData .Version;
}
public override string GetCatalog()
{
return VersionData .Catalog;
}
public override string GetCategory()
{
return VersionData .Category;
}
public override bool Runlnitialize()
{
return true ; // Do not fail!
}
public override bool RunLoadConfiguration()
{
return true ; // Do not fail!
}
public override bool RunConnect()
{
return this .mainForm.Connect();
}
public override bool RunDisconnect()
{
return this .mainForm.Disconnect();
}
public override bool RunSaveConfiguration()
{
return true ; // Do not fail!
}
public override bool RunCleanup()
{
return true ; // Do not fail!
}
}

The above sample implementation offers a maximurfieafbility especially because of the
usage of the real function block name and its iflentvhich are directly taken from the gen-
erated FBlock code.

Creating an FBlock Application using an EXE

Due to the fact that a dynamic link-library is gddda to prevent users from executing such a
file directly, is a DLL as binary output very dising during development time. Under that
condition it could be better to have an executadéead. To achieve this is in C# quite easy
because the differences between EXE files and Dadesnot that much. The only things

11

which are really needed are to choose “Windows isppbn” as the binary’s output type and
to provide an appropriated main function (usuallyated within file Program.cs).

To change the program’s output type from DLL int§EEopen the project’s properties pane
and move to page Application. Here you choose “Wimsl Application” from the combo box
below Output Type. That’s it.

The easiest way to obtain an appropriated Maintfongs to create an independent project of
type Windows Forms Application and thereafter tpycthe file Program.cs into the own pro-
ject. Do not forget to adapt the namespace aftéingahis file to your project! See following
code snipped for additional modifications.

static class Program
{
/Il <summary>
/Il The main entry point for the application.
/Il </[summary>
[STAThread]
static void Main()
{
Application .EnableVisualStyles();
Application .SetCompatibleTextRenderingDefault(false);

/I Adaptions according to FBlockManager's behavior.
FBlockManagerimpl impl = new FBlockManagerimpl ();
impl.Runlnitialize();
impl.RunLoadConfiguration();
Application .Run(impl.GetForm());
impl.RunSaveConfiguration();
impl.RunCleanup();

With this it becomes possible to switch betweereaecutable and a dynamic link-library as

output format whenever it is needed simply by clagpghe Output Type on the project’s pro-
perties pane.

Connecting an FBlock

As already mentioned an FBlock application’s mamf should provide a public method to
connect to a MOST function block which is called dgissFBlockManagerimpl. Further-
more, such method has the duty to inform the FBWakager application about a successful
connection by firing the Connection event. Seeofeihg code snipped how to fire this event.

public bool Connect()

{
/I Do anything to connect to MOST function block.

/I Inform FBlockManager about granted connection.
if (this .connected && this .manager != null)
this .manager.FireConnectedEvent();

return this .connected;

12

Disconnecting from an FBlock

The same as with connecting an FBlock applicatmplies to disconnecting such an applica-
tion too. This means an FBlock application shousw @rovide a public method to handle the
disconnection stuff and the method is called bgsiBlockManagerimpl. Furthermore, this
method has the duty to inform the FBlockManageliiaegfon about successful disconnecting
from its MOST function block by firing the Discontten event. See following code snipped
how to fire this event.

public bool Disconnect()

{

/I Do anything to disconnect from MOST function blo

/I Inform FBlockManager about successful disconnect
if (! this .connected && this .manager != null)
this .manager.FireDisconnectedEvent();

ck.

ion.

return

this .connected;

Handling the Instance ID

Because of the nature that an instance ID canh@twyeen two connections the FBlock appli-
cation needs to reflect such changes to the FBlacidger. The best way to achieve this is to
fire the Instance ID Changed event every time tistance ID has been modified. See follow-
ing code snipped how to fire this event.

private void numinstancelD_ValueChanged(object sender, EventArgs args)
{
if (this .manager != null)
this .manager.FirelnstancelDChangedEvent(

Convert .ToInt32(this .numinstancelD.Value)

The above code snipped assumes a number edit blox wWie FBlock application’s Ul which
is linked to a member function that handles albeathanges.

Using the Report Sink

To use the report sink from within an FBlock apation it is only needed to share the refer-
ence to thé=BlockAccessorBase derived class. But keep in mind, the report sinlk not be
available until the FBlockManager calls methodi#tite of interfacd FBlockAccessor! And

in case of an executable file which is not stattgdhe FBlockManager a report sink will
never be available except it will be implementedhbgself. This exactly means always check
the reference returned by property ReportSink térfacel FBlockAccessor before using it!
See following code snipped to get an impression toowse FBlockManager’s report sink.

null)
, "Test");

.manager.ReportSink !=
"Hello world" , "FBlock"

if (this .manager != null && this
this .manager.ReportSink.Message(

13

Using the ReportSink to capture internal applicastates and events is always a good idea.
But keep in mind, more than one application requgshe FBlockManager to print important
information. Therefore, distinguish between messag@arnings and errors carefully. Further-
more, always provide a source identifier and arr@mppated category in each message. This
makes it easier to filter the FBlockManager’s otfpanel for special messages.

It is also possible to handover an object referencegach report sink function. This is very
helpful if you need to print for example an exceptiSo, just put a caught exception into the
object parameter of an error message and the FBlac&ger will print the object using the

ToString method.

As shown in Figure 2 the interfatBeportSnk also provides methods to print out debugging

messages. But be aware debugging massages willbenfyrinted if the FBlockManager’s
executable file is compiled as Debug version. Qtiss such messages will be suppressed!

Abbreviations

ATS Automotive Test System, a C# based framewothuitl MOST applications
DLL Dynamic Link Library, a binary collection of exutable functions

EXE Extension of Windows executable files

FBlock The contract how a MOST function block commuates with its Shadows
FCat Function block Catalog, a description of a M@@&hction block

ID IDentifier, usually a number used as handlertmbject

K2L Name of the company which publishes varioussoegarding to MOST
MAG MOST Application Generator, a tool to genergiock binary files

MOST Multimedia Oriented Systems Transport, the mamication protocol

Ul User Interface, the visible part of an applioati

14

